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Abstract—We investigate the benefits of channel-aware (oppor-
tunistic) scheduling of transmissions in ad-hoc networks.The key
challenge in optimizing the performance of such systems is finding a
good compromise among three interdependent quantities, the density
and channel quality of the scheduled transmitters, and the resulting
interference at receivers. We propose two new channel-aware slotted
CSMA protocols: opportunistic CSMA (O-CSMA) and quantile-
based CSMA (Q-CSMA) and develop stochastic geometric models
allowing us to quantify their performance in terms of spatial reuse
and spatial fairness. When properly optimized these protocols offer
substantial improvements in terms of both of these metrics relative
to CSMA – particularly when the density of nodes is moderate
to high. Moreover, we show that a simple version of Q-CSMA
can achieve robust performance gains without requiring careful
parameter optimization. The paper supports the case that the benefits
associated with channel-aware scheduling in ad hoc networks, as in
centralized base station scenarios, might far outweigh theassociated
overhead, and this can be done robustly using a Q-CSMA like
protocol.

I. I NTRODUCTION

The efficiency and fairness of a wireless ad-hoc network de-
pends critically on how its associated Medium Access Control
(MAC) protocol allocates shared resources, e.g., frequency, space,
time, or codes. Starting with very simple protocols like ALOHA[1]
used in the context of satellite-based communications, over the last
decades, numerous approaches and protocols have been developed
to enhance the operation of ad-hoc networks, culminating inthe
CSMA protocols used today. While there has been substantial
research and development work on opportunistically exploiting
channel variations for infrastructure-based, only a few works in
the literature have specifically looked at this in context ofad-
hoc networks – see [2], [12] and references therein, where an
opportunistic variation of ALOHA is proposed and analyzed.

In this paper, we evaluatechannel-aware slotted CSMA proto-
cols for ad-hoc networks in terms of bothspatial reuseandspatial
fairness. We propose two MAC protocols, namely Opportunistic-
CSMA (O-CSMA) and Quantile-based1-CSMA (Q-CSMA) that
include two phases: channel-based qualification followed by con-
tention resolution. O-CSMA is only opportunistic in the qual-
ification phase where only the nodes having good channels to
their receivers are qualified to contend. By contrast in Q-CSMA
opportunism also plays a role in the contention process. In this
paper we propose spatial stochastic geometric models for networks
with randomly distributed nodes, that allow us to characterize
the overall average performance of the network. We make the
following key contributions.

1) We show that channel-aware CSMA protocols can improve
both spatial reuse and fairness of ad-hoc networks over
regular CSMA.

2) We characterize the subtle tradeoff between the density of
active transmitters and the quality of transmissions as the
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in [10], [9] and for a wireless LAN setting in [7].

function of qualification and carrier sense threshold and
evaluate the spatial reuse performance of O/Q-CSMA.

3) We quantify spatial unfairness arising from the interactions
between random nodes’ locations and MAC protocols as the
function of mean number of contending nodes. We show
that, quantile-based opportunistic MACs can improve the
fairness characteristics of CSMA networks.

4) We study the tradeoff between spatial fairness and reuse and
compare the Pareto-frontier of O-CSMA and Q-CSMA. We
show that the overall performance of Q-CSMA without the
qualification step is as good as Q-CSMA and better than
O-CSMA.

Our work is can be contrasted with previous work in following
aspects. To our knowledge, this is the first attempt to consider
the CSMA-based opportunistic MAC protocols in stochastic ge-
ometric framework. Second, this paper is the first to introduce
fairness in the context of a stochastic network model, whichis
analytically tractable while capturing the impact of both the MAC
and nodes’ random placements. Most previous work[6], [11],[5]
consider fairness for ad-hoc networks for afixed graph which is
quite revealing the impact of the underlying topology, but does
not give a sense of the overall problem over an ensemble of node
topologies.

The remainder of this paper is structured as follows. In Section
II and III, we provide our models and metrics respectively. In
Section IV, the performance of a typical node is analyzed as
the function of system parameters. Based on that, spatial reuse
and fairness are evaluated in Section V and VI respectively.We
conclude in Section VII.

II. SYSTEM MODEL

A. Node Distribution and Channel Model

We model the ad-hoc wireless network as a set of transmitters
and their corresponding receivers. Transmitters are randomly
distributed on the Euclidean plane as a homogeneous Marked
Poisson Point Process (PPP)Φ̃ = {Xi, Ei, Ti,Fi,F

′
i}, where

Φ ≡ {Xi}i≥1 is a PPP with densityλ denoting the set of
transmitters or their locations inR2 andei is an indicator function
which is equal to 1 if a nodeXi transmits and 0 otherwise, which
is governed by the medium access protocol and surrounding nodes
{Xj}j 6=i. We assume that the receiver of each transmitter isr
meters away from the transmitter in random direction. Finally
Fi = (Fij : j) denotes a vector of random variablesFij denoting
the fast fading channel gain betweenith transmitter and the
receiver associated withjth transmitter. We assume thatFijs
are symmetric, i.e.,Fij = Fji and independent and identically
distributed with meanµ−1, i.e., Fij ∼ F , with cumulative
distribution function (cdf)G (x) = 1 − e−µx with x ≥ 0, which
corresponds to the Rayleigh fading case.

We let‖x‖ be the norm of the vectorx ∈ R
2 andl(‖x− y‖) =

‖x− y‖α be the path loss (or slow fading) between two loca-
tions x, y ∈ R

2 with a pathloss exponentα > 2. Then, the



amount of interference power that thejth receiver at location
y experiences from theith transmitter at locationx is given as
Fij/l (‖x− y‖). The performance of thei-th receiver is governed
by its signal to noise ratio given as SINRi =

Fii/l(r)
IΦ\{Xi}

+W , where

IΦ\{Xi} =
∑

Xj∈Φ\{Xi}
EjFji/l (‖Xi −Xj‖) is the aggregate

interference power from interferers, or so-called shot noise, and
W is thermal noise power. In interference limited networks, the
impact of thermal noise is negligible as compared to interference,
so in this paper it is ignored by lettingW = 0. Our assumption
is that thei-th receiver getslog (1 + t) bits per second (bps) per
transmission if SINRi > t and gets zero otherwise.

B. Slotted Carrier Sense Multiple Access Protocols

The two MAC protocols we propose to study, O-CSMA and Q-
CSAM, share two phases in the process of resolving which nodes
will transmit.
Qualification process: We consider aslotted network, where
only qualified nodes contend with their neighbors to access the
medium. As in [2], [12], a node qualifies if its channel gain to
its associated receiver exceeds a thresholdγ. This requires that
channel feedback from each receiver be available to its associated
transmitter at each slot. Our model for this process is as follows.
We letΦγ = {Xi ∈ Φ|Fii > γ} denote the set of qualified nodes
or contenders. Because channel gains are assumed to be i.i.d., the
point process of qualified nodes is a homogenous PPP correspond-
ing to an independent thinning of the original PPP with probability
pγ = P(F > γ). Two transmittersXi andXj contendwith each
other if the received interference power they see from each other is
exceeds acarrier sense thresholdν, i.e., if F ′

ij/l(‖Xi −Xj‖) > ν
and by symmetryF ′

ji/l(‖Xi −Xj‖) > ν, whereF ′
ij = F ′

ji ∼ F
is the channel gain between twotransmittersXi andXj . The set
of nodes contending with nodeXi will be called itsneighborhood
and denotedN γ

i =
{

Xj ∈ Φγ : F ′
ji/l(‖Xi −Xj‖) > ν, j 6= i

}

.
Clearly contending nodes should not be allowed to transmit
simultaneously, which requires a contention resolution process
amongst nodes in each neighborhood.

Remark 1:The qualification process is a mechanism to oppor-
tunistically select nodes currently experiencing high channel gains
to their associated receivers. The posterior channel distribution for
a node that has qualified is thus a shifted exponential denoted
Gγ(x) ≡ P(F < x|F > γ) = (1 − e−µ(x−γ))1{x≥γ}, where1{·}

is an indicator function. Note that the qualification process not
only improves the transmit channel strength butalso reduces the
amount of interference. Unfortunately, we will see that parameter
γ needs to be chosen judiciously as it operationalizes a tradeoff
between having a low density of contenders with very high quality
channels but limiting the achievable spatial reuse versus ahigh
density of nodes with lower quality channels possibly limiting the
likelihood of successful transmissions.

Contention Resolution: The second phase resolves contention
amongst contending nodes. A node contends with its neighbors,
based on a timer value which is uniformly distributed on[0, 1].
At the start of each time slot, a qualified nodeXj in Φγ starts
its own timer and senses carrier. If it does not hear any node (in
its neighborhood) prior to the expiration of its timer, it initiates
transmission, otherwise it defers. O-CSMA and Q-CSMA differ in
the way nodes generate their timer values. Note that timer values in
practice need to be quantized, which in turn limits the performance
of these protocols. Due to space constraints we will introduce the
analysis of these effects but we refer the reader to [8].

1) Opportunistic CSMA :Under O-CSMA, a qualified node
Xi’s timer value Ti is simply a random variable uniformly
distributed on[0, 1] at each slot and the node will transmit only
if Ti = minj:Xj∈Nγ

i
∪{Xi} Tj i.e., it had the lowest timer value in

its neighborhood.
2) Quantile-based CSMA:Under Q-CSMA, a qualified node

Xi’s timer value Ti = 1 − Qi is tied to the randomness
associated with channel gain variations to its receiver. Specifically
the timer’s value is related to thequantileQi of the channel gain.
Mathematically at each slot the channel gain quantile associated
with a qualified nodeXj is Qj = Gγ (Fjj) whereGγ(·) is the
cumulative distribution function for the channel gain of a node
given it qualified, e.g., ofFjj givenFjj > γ. The quantile and thus
the timer value of a qualified node are still uniformly distributed
on [0,1]. Yet the coupling between the timer and the channel
introduces the announced opportunism. Under this mechanism,
nodeXi transmits only if it has the lowest timer orhighestquantile
amongst the nodes in its neighborhood, i.e., whenQi = Qmax

i

whereQmax
i ≡ maxj:Xj∈Nγ

i
∪{Xi} Qj.

Under Q-CSMA the channel gain of an active transmitter, i.e.,
a nodeXi which qualified and won the contention resolution
process resulting inEi = 1, can be modeled as follows. The
channel gain distribution for such a node isFmax

i,γ = G−1
γ (Qmax

i )
whereG−1

γ (·) is the inverse function ofGγ(·). LettingNγ
i = |N γ

i |
for simplicity, thenFmax

i,γ is aNγ
i + 1th order statistic, i.e.,

Fmax
i,γ = max{F1,γ , F2,γ , · · · , FNγ

i
+1,γ}, (1)

with distribution P
(

Fmax
i,γ ≤ x|Nγ

i = n
)

= (1 −
e−µ(x−γ))n+1

1{x≥γ} conditioned onNγ
i = n.

Remark 2:Unlike O-CSMA, a Q-CSMA takes advantage of
channel-awareness in both steps. Also one might expect Q-CSMA
might work even better without a qualification phase since the
quantile-based contention resolution can take advantage of oppor-
tunistic gain across a larger number of nodes in the neighborhood.
We will see in the sequel that this insight is true only when the
carrier sensing thresholdν is properly chosen. Yet the special
case Q-CSMA without a qualification requirement, i.e.,γ = 0 is
of interest, and will be denoted Q0-CSMA.

C. Further Notation

In the sequel we letLI (s) = E
[

e−sI
]

denote the Laplace
transform of the random variableI and ‖x‖ be the norm of
x ∈ R

2. We let |C| denote the cardinality of setC and letR+

denote the set of non-negative real numbers. For a point process
Φ living in a setN and a setY ⊂ N, following four probabilities
denote the same quantity so-called Palm probability:P(Φ\{0} ∈
Y|0 ∈ Φ) = P

0(Φ\{0} ∈ Y) = P
0!(Φ ∈ Y) = P(Φ0\{0} ∈ Y),

where we defineΦ0 as a point processΦ given 0 ∈ Φ. For
notational simplicity we will mainly use the second and fourth
representations.

III. PERFORMANCEMEASURES

The two key performance metrics of interest are spatial reuse
which measures howefficiently resources are reused by a given
MAC protocol and spatial fairness which measures howfairly the
space is used across nodes sharing the same space.

As a spatial reuse measure, we use thedensity of successful
transmissionswhich is defined as the mean number of nodes that
successfully transmit per square meter. This is given by

dsuc = λptxpsuc, (2)



where λ is the density of transmitters,ptx is the transmission
probability of a typical transmitter, andpsuc is the transmission
success probability of a typical receiver. Note that this metric
not only measures thelevel of spatial packingthroughλptx but
also measures thequality of transmissionsthroughpsuc, which
captures the interactions (through interference) among spatially
packed nodes.

As a spatial fairness measure, we introduce a spatial version
of Jain’s fairness index which measures fairness based on long-
term (or time-averaged)performance seen by nodes. Specifically,
let fi(Ni,Fi,F

′
i) be a performance metric of interest associated

with node Xi, whereNi is the number of other nodes in its
neighborhood. Consider the random variableE [fi(Ni,Fi,F

′
i)|Ni]

which captures variability in the mean performance seen by a
typical node, conditioned on having neighborhoods of varying
sizes. The spatial fairness measure proposed below is simply Jain’s
fairness index for this random variable, i.e., captures thedegree to
which the mean performance of nodes varies across nodes having
neighborhoods of different sizes:

F̃I =

(

E
0
[

E
0 [f0 (N0,F0,F

′
0) |N0]

])2

E0
[

(E0 [f0 (N0,F0,F′
0) |N0])

2
] , (3)

whereE0 denotes Palm expectation which is conditional expecta-
tion conditioned on a node at origin.

Remark 3:As explained in more detail in [8], this metric of
fairness captures fairness in the mean performance seen across
different classes of nodes, i.e., those which have different neigh-
borhood sizes. This makes the metric analytically tractable, and
still telling of the degree to which the protocol is able to rectify
inherent network topology variations in the number of neighbors
nodes will see.

IV. T RANSMISSION PERFORMANCEANALYSIS

In this section, we derive the transmission and success proba-
bility of a typical node for our two opportunistic protocols.

A. Opportunistic CSMA

1) Access Probability of a Typical Transmitter:Under O-
CSMA, we let Ei = 1{Fii > γ,Mi < minj:Xj∈Nγ

i
Mj} be

the transmission indicator ofXi and Φγ
M = {Xi ∈ Φ|Ei = 1}

be the set of active transmitters. Under Rayleigh fading, the
transmission probability of a typical transmitterX0 at origin is
given by the probability that the node qualifies and gets the
minimum timer value in its neighborhood, i.e.,poptx (γ, ν) =
E
0 [E0]. Using the fact that the two events are independent and

Nγ
0 = |N γ

0 | ∼ Poisson(pγN̄0) where pγ = P(F > γ) and

N̄0 = E
0
[

∑

Xj∈Φ\{0} 1 {Fj0 > νl(|Xj |)}
]

, we get

poptx (γ, ν) = E
0

[

pγ
1 +Nγ

0

]

=
1− exp

{

−pγN̄0

}

N̄0
. (4)

Note that the case withγ = 0 (or pγ = 1) corresponds to the pure
CSMA scheme.

2) Transmission Success Probability of a Typical Receiver:
Next we compute the transmission success probability of a typical
receiver conditioned on its associated transmitterX0 being at the
origin, i.e.,

popsuc (t, γ, ν) = P
0
(

F > l(r)tIΦγ
M

\{0}|F > γ
)

. (5)

Note that the set of active transmittersΦγ
M is a point process

induced by the qualification process followed by CSMA’s con-
tention resolution, which is known as the modified Matérn CSMA
process [3]. Due to the interdependencies amongst node locations,
it is hard to characterize this process. However, following[3], one
can approximateIΦγ0

M
\{0} by an aggregate interferenceIΦγ0

h
\{0}

in non-homogeneous PPP interferers with density,λγh (τ, λγ) for
τ > 0, whereλγ ≡ pγλ andh(τ, λγ) is the conditional probability
that a CSMA transmitter at distanceτ from origin is active given
an active CSMA transmitter at the origin and a density of qualified
nodesλγ , see [8]. Sinceh is a function which converges to 0
as τ → 0, and to poptx as τ → ∞, it captures the ‘inhibiting’
of transmitters realized by the CSMA MAC onΦγ0

M from the
perspective of an active transmitter at the origin.

For simplicity, letFγ is a random variable with the distribution
function Gγ . Then, (5) can be approximated as follows by
conditioning on the value ofFγ and applying Plancherel-Parseval
Theorem, see e.g., [4], [3]:
ˆ ∞

−∞

LI
Φ
γ0
h

\{0}
(2iπl (r) ts)

µ
µ−2iπs exp {2iπsγ} − 1

2iπs
ds. (6)

A detailed derivation can be found in [8]. The next step is to
compute the Laplace transformLI

Φ
γ0
h

\{0}
(s), which is given as

LI
Φ
γ0
h

\{0}
(s) = exp

{

−λγ

ˆ ∞

0

ˆ 2π

0

h (τ, λγ) τdθdτ

1 + µf (τ, r, θ) /s

}

, (7)

where f (τ, r, θ) = l
(√

τ2 + r2 − 2τr cos θ
)

. Substituting (7)
into (6), we can numerically compute the approximate success
probabilitypopsuc(t, γ, ν).

B. Quantile-based CSMA

1) Access Probability of a Typical Transmitter:Under Q-
CSMA we haveEi = 1{Fii > γ,Qi > maxj:Xj∈Nγ

i
Qj} of

Q-CSMA nodeXi ∈ Φ. Then, using similar techniques as before,
one can compute the access probability of a typical nodeX0. Since
the random variableQi are independent and uniformly distributed,
we have thatpqttx(γ, ν) = poptx(γ, ν).

2) Transmission Success Probability of a Typical Receiver:
To determine the transmission success probability, we needto
characterize the fading gainFmax

0,γ in (1) and the interference
powerIΦγ0

M
\{0} that a typical receiver sees. By contrast with the

O-CSMA case,Fmax
0,γ depends onNγ

0 +1; in the sequel we make
this explicit by writingFmax

0,γ (Nγ
0 +1). The transmission success

probability to a typical receiver is thus given by

pqtsuc(γ, t, ν) = P
0(Fmax

0,γ (Nγ
0 + 1) > tl(r)IΦγ

M
\{0}). (8)

Unlike (5), the channel gainFmax
0,γ (Nγ

0 + 1) is no longer
independent of the aggregate interferenceIΦγ0

M
\{0}. To see this

consider the following extreme cases. First, supposeFmax
0,γ (Nγ

0 +
1) has a very small value close to 0, sayǫ, then, this implies that
the timer values ofX0’s neighbors are concentrated within the
small interval[1 − ǫ, 1]. Then, the neighbors ofX0’s neighbors
are not likely to defer their transmissions toX0’s neighbors.
This meansX0’s receiver would experience a higher interference.
While if Fmax

0,γ (Nγ
0 + 1) has a large value close to 1, sayω,

then, the timer values ofX0’s neighbors would be distributed in
[1−ω, 1], potentially resulting in deferrals of their own neighbors.
In this case one might expect the interference level to be reduced.
Thus both the channel gainFmax

0,γ (Nγ
0 + 1) to, and interference



level at the receiver depend onN0. By conditioning onNγ
0 and

Fmax
0,γ (Nγ

0 + 1), and approximatingIΦγ0
M

\{0} for a givenNγ
0 = n

and Fmax
0,γ (Nγ

0 + 1) = x with an InterferenceIΦγ
u

from non-
homogeneous Poisson interferers with densityλγu(n, x, τ, λ, γ),
which is basically the conditional probability that a nodey1
transmits conditioned on following facts: 1) bothy0 andy1 belong
to Φγ , 2) y1 is a distanceτ away fromy0, 3) Fmax

0,γ (Nγ
0 +1) = x

or equivalentlyy0’s timer valueT0 is given ast0 = 1 − Gγ(x),
4) Nγ

0 = n, and 5)y0 transmits, i.e.,E0 = 1. It is written as

u(n, x, τ, λ, γ) = P(E1 = 1|E0 = 1, Nγ
0 = n

, Fmax
0,γ (Nγ

0 + 1) = x, {y0, y1} ⊂ Φγ ,|y0 − y1| = τ),

and given as (10), see [8] for the detailed derivation.
Then, applying the Plancherel-Parseval Theorem, (8) can be

approximated as

E
0

[

ˆ ∞

−∞

L
I
N

γ
0

,Fmax
0,γ

(N
γ
0

+1)

Φ
γ
u\{0}

(2iπl(r)ts)
e2iπsF

max
0,γ (Nγ

0 +1) − 1

2iπs
ds

]

,

whereIn,x
Φγ0

u \{0}
is a random variable with cumulative distribution

P
0(IΦγ

u\{0} < z|Nγ
0 = n, Fmax

0 (Nγ
0 +1) = x). Then, the Laplace

transformL
I
N

γ
0 ,Fmax

0,γ (N
γ
0 +1)

Φ
γ
u\{0}

(s) is given by

exp

{

−λγ

ˆ ∞

0

ˆ 2π

0

u(Nγ
0 , F

max
0,γ (Nγ

0 + 1), τ, λγ)τdθdτ

1 + µf(τ, r, θ)/s

}

,

(9)

V. SPATIAL REUSE

In this section, we first explore howλptx andpsuc behave as the
functions of the qualification thresholdγ and the carrier sensing
thresholdν, and then we compare the performance of O-CSMA
and Q-CSMA. The results were numerically computed.

A. Density of Active Transmittersλptx

Fig. 1a exhibits the density of active transmittersλptx as a
function λ. As λ increases, the space is packed with a higher
number of active transmitters, but it saturates to a value which
we refer to a the asymptotic density of active transmitters de-
fined asλcsma(ν) ≡ limλ→∞ λpoptx = limλ→∞ λpqttx. It is easy
to show thatλcsma(ν) = 1/N̂0, where N̂0 = N̄γ

0 /λ
γ =

E[
´

R2 1 {F > νl(|x|)} dx] is interpreted as the mean neighbor-
hood size of a typical transmitter. Note that since each active
transmitter occupy the area of sizêN0, intuitively, we can have at
mostN̂−1

0 active transmitters per unit space in the asymptotically
dense networks. Ifγ increases, the density of qualified trans-
mitters λpγ reduces, which accordingly decreasesλptx, but the
converging valueλcsma(ν) is not affected. While ifν increases,
the neighborhood size gets smaller, which allows a higher density
of active transmitters, and accordingly higherλcsma(ν).

B. Success Probability of O-CSMA

Fig. 1b plots the success probabilitypopsuc as a function of
λ for variousγ and ν values. The general behavior ofpopsuc is
as follows. Asλ increases,popsuc converges to a value between
0 and 1, since interference saturates. See [8] for details. If γ
increases, the signal quality at receivers increases and atthe
same time it reduces the density of active transmitters resulting in
reduced interference power. Thus, increasingγ boosts the SINR
at receivers, and thus increases success probability. While if ν

increases, the size of neighborhood is reduced and a higher number
of active transmitters are allowed, which accordingly generates
stronger aggregate interference, so both the received SINRand
success probability decrease.

C. Success Probability of Q-CSMA

Fig. 1c exhibits the success probabilitypqtsuc as the function
of λ for variousγ and ν values. The general behavior ofpqtsuc
is as follows. If λ increases,pqtsuc decreases first due to the
increased interference but soon converges 1 due to increasing
opportunistic gain. Ifγ increases, the interference level decreases
due to the reduced density of active transmitters. However it is
not clear if signal strength would show monotonically increasing
behavior as was the case for O-CSMA, although it eventually
increases asν increases. This is because by increasingγ, the pdf
of Fmax

γ shifts to the right hand side (increasing the likelihood of
success) but at the same time it decreases the size of neighborhood,
thus the opportunistic gain coming from multiple contenders
decreases (decreasing the likelihood of success). Ifν increases,
pqtsuc decreases due to the increased interference. Note that under
the same parameter set, the success probability of Q-CSMA is
always larger than O-CSMA, i.e.,pqtsuc(t, γ, ν, λ) ≥ popsuc(t, γ, ν, λ)
simply due to the stochastic ordering relation :Fmax

γ ≥st Fγ .

D. Performance Comparison

Fig. 2a exhibits the density of successful transmissions ofQ0-
CSMA and O-CSMA as the function ofλ for various values ofγ
with ν = t = µ = 1. As λ increases,dopsuc(γ, λ) curves increase
due to the increasing density of active transmitters, however they
converge to some values since bothλpoptx andpopsuc converge. For
large γ, popsuc is close to 1, so, asλ gets large,dopsuc gets closer
to the maximum performance that O-CSMA can achieve. When
λ is small,dopsuc decreases asγ increases because the loss coming
from decreased density of active transmitters is larger than the
gain resulting from the increased quality of transmissions.

We note that the density of successful transmissions of
Q-CSMA is always higher than that of O-CSMA, i.e.,
dqtsuc(t, γ, ν, λ) ≥ dopsuc(t, γ, ν, λ) for the same parameter set due
to the fact thatpqttx = poptx and pqtsuc(t, γ, ν, λ) ≥ popsuc(t, γ, ν, λ).
What is more interesting here, is that the density of successful
transmissions of Q0-CSMA is better than that of O-CSMA, which
implies the robustness of its performance to the density of nodes,
see Fig. 2a. However, this is true only when the carrier sensing
thresholdν is properly chosen. In this case, asλ increases, the
opportunistic gain from increasing number of neighbors is larger
than the loss from increasing aggregate interference. Ifν is large
(inappropriate value), then this is not the case. Then, Q0-CSMA
will not be uniformly better than O-CSMA. For example, see the
caseν = 5 in [8].

VI. SPATIAL FAIRNESS

In this section, we evaluate our spatial fairness metric and
characterize the tradeoff between spatial reuse and fairness.

A. Unfairness in CSMA Networks

It has been reported that (unslotted) CSMA networks are unfair
[5], [11] due irregular network topologies and a combination of
the carrier sense mechanism and binary exponential backoff. This
can be partially mitigated byslotting since all nodes’ contention



u(n, x, τ, λ, γ) =
N̄γ

0 G(νl(τ))

n+ (N̄γ
0 − n)G(νl(τ))

(

(1− e−t0N̄
γ
0 (1−ps))

N̄γ
0 (1 − ps)

+

+ (1− t0)e
−N̄γ

0 (1−ps)
n
∑

k=0

k!

ηk+1



1− e−η
k
∑

j=0

ηj

j!





(

n

k

)

pks (1− ps)
n−k

)

, (10)
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increases and saturates asλ increases due to the
carrier sensing in CSMA protocol.
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asλ increases, but converges to a value between 0
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Figure 1

windows are reset every slot. However, unfairness resulting from
network topology irregularity remains. We will use (3) to quan-
tify the fairness of O/Q-CSMA networks under the assumption
that the fading between any two transmitters is averaged, i.e.,
F ′
ij = E[F ] = µ−1. Under this assumption, the channel gains

from potential neighbors to a typical transmitter only depend
on their pathloss, so the size of neighborhood does not change
over time. This assumption is introduced to estimate the average
fraction of time a node access the medium (access frequency).
Let Nγ

s,0 be a random variable denoting the number of neighbors
under this fading assumption with mean̄Nγ

s,0.

B. Fairness for access frequency and the Frequency of Successful
Transmissions

Next we show that channel aware CSMA protocols has the
potential to mitigate topological unfairness. We shall focus spatial
fairness for access frequency and the frequency of successful
transmissions.

For both O/Q-CSMA, we letE0[f(Nγ
s,0,F0,F

′
0)|Nγ

s,0] =
pγ

Nγ
s,0+1

be the access frequencydenoting the fraction of

time a node with Nγ
s,0 neighbors can access medium. We

let E
0[f(Nγ

s,0,F0,F
′
0)|Nγ

s,0] = 1
Nγ

s,0+1
p̄
op(qt)
suc (γ,Nγ

s,0) be the
frequency of successful transmissionsof a receiver, where
p̄
op(qt)
suc (γ,Nγ

s,0) is the conditional success probability condi-
tioned on that its associated transmitter hasNγ

s,0 contenders.
p̄qtsuc(γ,N

γ
s,0) is given as (11) and approximated as (12):

P
0(Fmax

0,γ (Nγ
s,0 + 1) > tIΦM\{0}

l(r)|Nγ
s,0 = n) (11)

≈ E
0

[

ˆ ∞

−∞

L
I
N

γ
s,0,Fmax

0,γ (N
γ
s,0+1)

Φ
γ
u\{0}

(2iπl(r)ts)× (12)

e2iπsF
max
0,γ (Nγ

s,0+1) − 1

2iπs
ds
∣

∣

∣N
γ
s,0 = n

]

.

The corresponding spatial fairness index on access frequency

across randomly distributed nodes is given as follows:

F̃Iac(γ, N̄
γ
s,0) =

(

E

[

pγ

Nγ
s,0+1

])2

E

[

(

pγ

Nγ
s,0+1

)2
] =

eN̄
γ
s,0 + e−N̄γ

s,0 − 2

N̄γ
s,0

(

Ei(N̄γ
s,0)− log N̄γ

s,0 − η
) ,

(13)
whereN̄γ

s,0 = E[Nγ
s,0], Ei (x) = −

´∞

−x t
−1e−tdt is an exponen-

tial integral function, andη = 0.5772 . . .. is the Euler-Mascheroni
constant.

The corresponding fairness index on the frequency of successful
transmission is given by

F̃I
qt

suc(γ, N̄
γ
s,0) =

(

E
0
[

pγ

Nγ
s,0+1

p̄qtsuc(γ,N
γ
s,0)
])2

E0

[

(

pγ

Nγ
s,0+1

p̄qtsuc(γ,N
γ
s,0)
)2
] . (14)

For O-CSMA,p̄opsuc(γ,N
γ
s,0) can be approximated in a similar way

andF̃I
op

suc can be defined accordingly. Using the fact thatNγ
s,0 ∼

Poisson(N̄γ
s,0), one can numerically computẽFI

qt

suc(γ, N̄
γ
s,0) and

F̃I
op

suc(γ, N̄
γ
s,0).

In Fig. 2b we plotted thẽFIac and F̃I
qt

suc and F̃I
op

suc for γ = 0.
The dotted curveF̃Iac denotes the fairness on access frequency
for O/Q-CSMA versusN̄γ

s,0 (ν). If N̄γ
s,0 is small, almost every

node which contends gets to send, in fact all transmitters have
access frequency close topγ , so fairness index is close to 1.
If N̄γ

s,0 is relatively small, asN̄γ
s,0 (which is mean and the

variability of the number of contenders) increases, the variability
of access frequency, i.e., pγ

Nγ
s,0+1

, across nodes increases resulting

in a decrease in fairness. However, ifN̄γ
s,0 is relatively large, the

fairness index eventually increases again since, in this regime, the
variability of access frequency pγ

Nγ
s,0+1

decreases and converges
to 0, which in turn increases fairness. Note that the fairness
curve has its minimum value0.73019 . . . , which corresponds to
the minimum fairness index of slotted system. Specifically,the
minimizer n∗ ≡ argminn>0 FIac(n) ≈ 2.9736657 can be found
by numerically solving d

dnFIac(n) = 0. Based on this, we make
following argrument.The spatial fairness for access frequency of
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Figure 2

slotted O/Q-CSMA is worst, roughly 0.73 when the mean number
of contenders of a typical transmitter is roughly 3.

The figure also shows̃FI
op

suc and F̃I
qt

suc the fairness on the fre-
quency of successful transmissions for O-CSMA and Q0-CSMA
respectively. Note that thẽFI

op/qt

suc is improved overF̃Iac, and
F̃I

qt

suc is improved overF̃I
op

suc. The gain is significant in the regime
whereN̄γ

s,0 . 10. In this regime, the performance heterogeneity
from different access frequency (due to random nodes placements)
is high, but the increase of the success probability reducesthe
performance differences across nodes. In other words, the high
success probability compensates the low access frequency,which
decreases the variability of performance. While, in the regime
where N̄γ

s,0 is large (orν is small), the density of concurrent
transmitters become small, which generates weak interference.
Thus, most nodes succeed in transmission with high probability
irrespective of the number of neighbors, so in this regime there
is not much difference in performance. Thus, Q0-CSMA and O-
CSMA have similar performance.

So far, it has been shown that Q-CSMA can improve spatial fair-
ness characteristics. However, with this result only, it isnot clear
how the density of successful transmissions and fairness jointly
behave depending on system parameters. To better understand, we
need to consider the pair of the performance measures.

C. Tradeoff between Spatial Fairness and Spatial Reuse

In this section, we consider the tradeoff between spatial fair-
ness and reuse under various parameter sets and the maximum
performance that can be achieved. To that end, we make fol-
lowing definitions. We refer to(a, b) with a a fairness andb
the density of successful transmissions achievable under agiven
parameter setting, as anFD-pair. We say that an FD-pair(a, b)
dominatesanother (c, d) ∈ R

2
+, if a ≥ c and b ≥ d. We

use (c, d) � (a, b) to denote this relation. We call the set
Λ(a, b) =

{

(x, y) ∈ R
2
+|(x, y) � (a, b)

}

the dominated setby
(a, b), and the subset of FD-pairs which are not dominated by
any other FD-pairs in the set is called asPareto-frontierof the
set. Using these definitions, we define the dominated set for O-
CSMA, for a givent andλ, as

Ωop(t, λ) =
⋃

γ≥0,ν≥0

Λ(F̃I
op

suc(t, γ, ν, λ), d
op
suc(t, γ, ν, λ)).

The dominated set of Q-CSMAΩqt(t, λ) is defined in a similar
way, and that of Q0-CSMA Ωqt

0 (t, λ) is defined as

Ωqt
0 (t, λ) =

⋃

ν≥0

Λ(F̃I
qt

suc(t, 0, ν, λ), d
qt
suc(t, 0, ν, λ)).

Fig. 2c, plotsΩop(t, λ), Ωqt(t, λ) andΩqt
0 (t, λ). As can be seen,

the dominated set of Q0-CSMA is very close to that of Q-CSMA,
which makes Q0-CSMA, with one less parameter, an attractive
choice from an engineering point of view. There exists a subset
of Ωop(t, λ) which is not dominated by FD-pairs of Q0-CSMA,
however, this region is relatively small compared to the region of
Ωqt

0 (t, λ) which is not dominated by O-CSMA.

VII. C ONCLUSION

In this paper, we showed that spatial reuse and fairness of
CSMA ad-hoc networks can be significantly improved by using
simple channel-aware CSMA protocols. In doing so, the optimal
compromise between the density of active transmitters and the
resulting aggregate interference needs to be made by controlling
two system parameters : qualification and carrier sensing thresh-
olds. We found that a simple version of Q-CSMA, with one less
parameters, shows robust performance in both spatial reuseand
fairness.
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